1,578 research outputs found

    Mechanisms with evidence: commitment and robustness

    Full text link
    We show that in a class of I‐agent mechanism design problems with evidence, commitment is unnecessary, randomization has no value, and robust incentive compatibility has no cost. In particular, for each agent i, we construct a simple disclosure game between the principal and agent i where the equilibrium strategies of the agents in these disclosure games give their equilibrium strategies in the game corresponding to the mechanism but where the principal is not committed to his response. In this equilibrium, the principal obtains the same payoff as in the optimal mechanism with commitment. As an application, we show that certain costly verification models can be characterized using equilibrium analysis of an associated model of evidence.Accepted manuscrip

    Radiative Lifetimes of Single Excitons in Semiconductor Quantum Dots- Manifestation of the Spatial Coherence Effect

    Full text link
    Using time correlated single photon counting combined with temperature dependent diffraction limited confocal photoluminescence spectroscopy we accurately determine, for the first time, the intrinsic radiative lifetime of single excitons confined within semiconductor quantum dots. Their lifetime is one (two) orders of magnitude longer than the intrinsic radiative lifetime of single excitons confined in semiconductor quantum wires (wells) of comparable confining dimensions. We quantitatively explain this long radiative time in terms of the reduced spatial coherence between the confined exciton dipole moment and the radiation electromagnetic field.Comment: 4 pages, 3 figure

    Cluster versus POTENT Density and Velocity Fields: Cluster Biasing and Omega

    Get PDF
    The density and velocity fields as extracted from the Abell/ACO clusters are compared to the corresponding fields recovered by the POTENT method from the Mark~III peculiar velocities of galaxies. In order to minimize non-linear effects and to deal with ill-sampled regions we smooth both fields using a Gaussian window with radii ranging between 12 - 20\hmpc. The density and velocity fields within 70\hmpc exhibit similarities, qualitatively consistent with gravitational instability theory and a linear biasing relation between clusters and mass. The random and systematic errors are evaluated with the help of mock catalogs. Quantitative comparisons within a volume containing âˆŒâ€‰âŁ12\sim\!12 independent samples yield \betac\equiv\Omega^{0.6}/b_c=0.22\pm0.08, where bcb_c is the cluster biasing parameter at 15\hmpc. If bc∌4.5b_c \sim 4.5, as indicated by the cluster correlation function, our result is consistent with Ω∌1\Omega \sim 1.Comment: 18 pages, latex, 2 ps figures 6 gif figures. Accepted for pubblications in MNRA

    Anisotropic Hubble expansion of large scale structures

    Full text link
    We investigate the dynamics of an homogenous distribution of galaxies moving under the cosmological expansion through Euler-Poisson equations system. The solutions are interpreted with the aim of understanding the cosmic velocity fields in the Local Super Cluster, and in particular the presence of a bulk flow. Among several solutions, we shows a planar kinematics with constant (eternal) and rotational distortion, the velocity field is not potential

    Dependence of the Inner DM Profile on the Halo Mass

    Get PDF
    I compare the density profile of dark matter (DM) halos in cold dark matter (CDM) N-body simulations with 1 Mpc, 32 Mpc, 256 Mpc and 1024 Mpc box sizes. In dimensionless units the simulations differ only for the initial power spectrum of density perturbations. I compare the profiles when the most massive halos are composed of about 10^5 DM particles. The DM density profiles of the halos in the 1 Mpc box show systematically shallower cores with respect to the corresponding halos in the 32 Mpc simulation that have masses, M_{dm}, typical of the Milky Way and are fitted by a NFW profile. The DM density profiles of the halos in the 256 Mpc box are consistent with having steeper cores than the corresponding halos in the 32 Mpc simulation, but higher mass resolution simulations are needed to strengthen this result. Combined, these results indicate that the density profile of DM halos is not universal, presenting shallower cores in dwarf galaxies and steeper cores in clusters. Physically the result sustains the hypothesis that the mass function of the accreting satellites determines the inner slope of the DM profile. In comoving coordinates, r, the profile \rho_{dm} \propto 1/(X^\alpha(1+X)^{3-\alpha}), with X=c_\Delta r/r_\Delta, r_\Delta is the virial radius and \alpha =\alpha(M_{dm}), provides a good fit to all the DM halos from dwarf galaxies to clusters at any redshift with the same concentration parameter c_\Delta ~ 7. The slope, \gamma, of the outer parts of the halo appears to depend on the acceleration of the universe: when the scale parameter is a=(1+z)^{-1} < 1, the slope is \gamma ~ 3 as in the NFW profile, but \gamma ~ 4 at a > 1 when \Omega_\Lambda ~ 1 and the universe is inflating.[abridged]Comment: Accepted for publication in MNRAS. 13 pages, including 11 figures and 2 tables. The revised version has an additional discussion section and work on the velocity dispersion anisotrop
    • 

    corecore